Files
jenna-tools/py/op.py
bipproduction 822b68c10f tambahannya
2025-12-07 09:00:54 +08:00

322 lines
11 KiB
Python

import io
import os
import asyncio
from typing import Optional
from functools import lru_cache
import torch
import torchaudio as ta
import torchaudio.functional as F
from chatterbox.tts import ChatterboxTTS
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from concurrent.futures import ThreadPoolExecutor
import multiprocessing
class TTSConfig:
"""Configuration for TTS model and processing"""
MODEL_REPO = "grandhigh/Chatterbox-TTS-Indonesian"
CHECKPOINT = "t3_cfg.safetensors"
DEVICE = "cpu"
# Optimized generation parameters for speed
TEMPERATURE = 0.7
TOP_P = 0.9
REPETITION_PENALTY = 1.1
# Audio processing
AUDIO_GAIN_DB = 0.8
# Performance settings
USE_QUANTIZATION = True
USE_TORCH_COMPILE = True
SIMPLIFY_AUDIO_ENHANCEMENT = True
ENABLE_CACHING = True
class AudioProcessor:
"""Audio enhancement utilities (optimized)"""
@staticmethod
def generate_pink_noise_fast(shape, device):
"""Generate pink noise for audio enhancement (vectorized)"""
white = torch.randn(shape, device=device)
# Fast approximation using multi-scale filtering
pink = white * 0.5
# Apply simple averaging for pink-ish spectrum
if white.dim() == 1:
white_2d = white.unsqueeze(0).unsqueeze(0)
else:
white_2d = white.unsqueeze(0) if white.dim() == 2 else white
# Quick low-pass filtering approximation
kernel_size = min(3, white_2d.shape[-1])
if kernel_size >= 2:
filtered = torch.nn.functional.avg_pool1d(
white_2d,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2
)
pink += filtered.squeeze(0) * 0.3 if white.dim() == 1 else filtered.squeeze(0)
return pink * 0.1
@staticmethod
def enhance_audio_fast(wav, sr):
"""Apply audio enhancements with optimized operations"""
with torch.no_grad():
# Normalize
peak = wav.abs().max()
if peak > 0:
wav = wav / (peak + 1e-8) * 0.95
# Apply filters in sequence (no-grad mode for speed)
wav = F.highpass_biquad(wav, sr, cutoff_freq=60)
wav = F.lowpass_biquad(wav, sr, cutoff_freq=10000)
wav = F.bass_biquad(wav, sr, gain=1.5, central_freq=200, Q=0.7)
wav = F.treble_biquad(wav, sr, gain=-1.2, central_freq=6000, Q=0.7)
# Vectorized compression (faster than loop)
threshold = 0.6
ratio = 2.5
abs_wav = wav.abs()
mask = abs_wav > threshold
wav = torch.where(
mask,
torch.sign(wav) * (threshold + (abs_wav - threshold) / ratio),
wav
)
wav = torch.tanh(wav * 1.08)
# Add pink noise (fast version)
wav = wav + AudioProcessor.generate_pink_noise_fast(wav.shape, wav.device) * 0.0003
wav = F.gain(wav, gain_db=TTSConfig.AUDIO_GAIN_DB)
# Final normalization
peak = wav.abs().max()
if peak > 0:
wav = wav / peak * 0.88
return wav
@staticmethod
def enhance_audio_simple(wav, sr):
"""Simplified audio enhancement for maximum speed"""
with torch.no_grad():
# Simple normalization and tanh saturation
peak = wav.abs().max()
if peak > 0:
wav = wav / (peak + 1e-8) * 0.95
# Basic filtering
wav = F.highpass_biquad(wav, sr, cutoff_freq=80)
wav = F.lowpass_biquad(wav, sr, cutoff_freq=8000)
# Soft clipping
wav = torch.tanh(wav * 1.1)
# Final normalization
peak = wav.abs().max()
if peak > 0:
wav = wav / peak * 0.9
return wav
@staticmethod
def save_tensor_to_wav(wav_tensor: torch.Tensor, sr: int, out_wav_path: str):
"""Save a torch tensor to WAV file"""
# Ensure float32 CPU tensor
if wav_tensor.device.type != "cpu":
wav_tensor = wav_tensor.cpu()
if wav_tensor.dtype != torch.float32:
wav_tensor = wav_tensor.type(torch.float32)
# torchaudio.save requires shape [channels, samples]
if wav_tensor.dim() == 1:
wav_out = wav_tensor.unsqueeze(0)
else:
wav_out = wav_tensor
# Save directly as WAV
ta.save(out_wav_path, wav_out, sr, format="wav")
@staticmethod
def tensor_to_wav_buffer(wav_tensor: torch.Tensor, sr: int) -> io.BytesIO:
"""Convert torch tensor to WAV buffer"""
buf = io.BytesIO()
if wav_tensor.dim() == 1:
wav_out = wav_tensor.unsqueeze(0)
else:
wav_out = wav_tensor
ta.save(buf, wav_out, sr, format="wav")
buf.seek(0)
return buf
class TTSEngine:
"""Main TTS engine with model management (optimized)"""
def __init__(self, config: TTSConfig, thread_pool: Optional[ThreadPoolExecutor] = None):
self.config = config
self.thread_pool = thread_pool or ThreadPoolExecutor(
max_workers=multiprocessing.cpu_count()
)
self.model = None
self.model_lock = asyncio.Lock()
self.sr = None
self.audio_prompt_cache = {} if config.ENABLE_CACHING else None
def load_model(self):
"""Load the TTS model and checkpoint with optimizations"""
print("Loading model...")
self.model = ChatterboxTTS.from_pretrained(device=self.config.DEVICE)
ckpt = hf_hub_download(repo_id=self.config.MODEL_REPO, filename=self.config.CHECKPOINT)
state = load_file(ckpt, device=self.config.DEVICE)
self.model.t3.to(self.config.DEVICE).load_state_dict(state)
self.model.t3.eval()
# Apply quantization for CPU speed
if self.config.USE_QUANTIZATION:
print("Applying dynamic quantization...")
self.model.t3 = torch.quantization.quantize_dynamic(
self.model.t3,
{torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU},
dtype=torch.qint8
)
# Apply torch.compile if available (PyTorch 2.0+)
if self.config.USE_TORCH_COMPILE and hasattr(torch, 'compile'):
print("Compiling model with torch.compile...")
try:
self.model.t3 = torch.compile(self.model.t3, mode="reduce-overhead")
except Exception as e:
print(f"Torch compile failed: {e}, continuing without compilation")
# Disable dropout for inference
for m in self.model.t3.modules():
if hasattr(m, "training"):
m.training = False
if isinstance(m, torch.nn.Dropout):
m.p = 0
self.sr = self.model.sr
print("Model ready (optimized for CPU).")
def _load_audio_prompt(self, audio_prompt_path: str):
"""Load audio prompt with optional caching"""
if self.config.ENABLE_CACHING and audio_prompt_path in self.audio_prompt_cache:
return self.audio_prompt_cache[audio_prompt_path]
# Load normally
# Note: actual loading is done inside model.generate
if self.config.ENABLE_CACHING:
self.audio_prompt_cache[audio_prompt_path] = audio_prompt_path
return audio_prompt_path
async def generate(self, text: str, audio_prompt_path: str) -> torch.Tensor:
"""Generate audio from text with voice prompt"""
async with self.model_lock:
# Cache audio prompt path
cached_prompt = self._load_audio_prompt(audio_prompt_path)
def blocking_generate():
with torch.no_grad():
# Set number of threads for CPU inference
torch.set_num_threads(multiprocessing.cpu_count())
return self.model.generate(
text,
audio_prompt_path=cached_prompt,
temperature=self.config.TEMPERATURE,
top_p=self.config.TOP_P,
repetition_penalty=self.config.REPETITION_PENALTY,
)
wav = await asyncio.get_event_loop().run_in_executor(
self.thread_pool,
blocking_generate
)
return wav
async def generate_and_enhance(self, text: str, audio_prompt_path: str) -> torch.Tensor:
"""Generate and enhance audio"""
wav = await self.generate(text, audio_prompt_path)
# Choose enhancement method based on config
enhance_func = (
AudioProcessor.enhance_audio_simple
if self.config.SIMPLIFY_AUDIO_ENHANCEMENT
else AudioProcessor.enhance_audio_fast
)
# Enhance audio (CPU-bound)
wav = await asyncio.get_event_loop().run_in_executor(
self.thread_pool,
lambda: enhance_func(wav.cpu(), self.sr)
)
return wav
async def generate_to_file(self, text: str, audio_prompt_path: str, output_path: str):
"""Generate audio and save to file"""
wav = await self.generate_and_enhance(text, audio_prompt_path)
# Save to WAV
await asyncio.get_event_loop().run_in_executor(
self.thread_pool,
AudioProcessor.save_tensor_to_wav,
wav,
self.sr,
output_path
)
async def generate_to_buffer(self, text: str, audio_prompt_path: str) -> io.BytesIO:
"""Generate audio and return as WAV buffer"""
wav = await self.generate_and_enhance(text, audio_prompt_path)
# Convert to buffer
buffer = await asyncio.get_event_loop().run_in_executor(
self.thread_pool,
AudioProcessor.tensor_to_wav_buffer,
wav,
self.sr
)
return buffer
def clear_cache(self):
"""Clear audio prompt cache"""
if self.audio_prompt_cache:
self.audio_prompt_cache.clear()
# Example usage
async def main():
"""Example usage of optimized TTS engine"""
config = TTSConfig()
engine = TTSEngine(config)
# Load model once
engine.load_model()
# Generate audio
text = "Halo, ini adalah tes text to speech dalam bahasa Indonesia."
audio_prompt = "path/to/your/voice_sample.wav"
# Generate to file
await engine.generate_to_file(text, audio_prompt, "output.wav")
print("Audio generated successfully!")
# Or generate to buffer
buffer = await engine.generate_to_buffer(text, audio_prompt)
print(f"Audio buffer size: {len(buffer.getvalue())} bytes")
if __name__ == "__main__":
asyncio.run(main())